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1 Introduction 

Bahl, Cocke, Jelenick and Raviv (BCJR) wrote their 1974 IEEE correspondence1 
paper compactly. The development of their creative a posteriori probablity (APP) 
algorithm unfolds flawlessly up to a boundary condition anomaly, easily resolved, 
but a portent. 

The APP algorithm itself is satisfactorily completed. They apply it to convolutional 
and block decoding, only convolutional considered here. A maximum a posteriori 
(MAP) decoding rule is then described, with issues unvisited by BCJR. We are left 
with the enticing algorithm, but no simple way, at least in 1974, to build a BCJR 
decoder. The algorithm languished until 1992 or so when turbo coding appeared. 

This revisit reconstructs the algorithm using a more conventional definition of 
encoder state. The APP algorithm development is rearranged for a possibly better 
flow among dependencies, expanding the block diagram and adding view of the 
encoded block for clarity, correcting an error and an ambiguity, and adding 
discussion. This in no way diminishes BCJR’s achievement, the algorithm itself. 

The BCJR algorithm contrasts with Viterbi’s earlier maximum likelihood (ML) 
algorithm and his insightful follow-up paper on a forward-and-backward version, 
the subject of a separate review2. The soft output Viterbi algorithm (SOVA) is the 
most relevant comparison to BCJR, as both are probability estimators. 

Both the BCJR and Viterbi algorithms are based on Bayes rule, but on opposite 
sides of the rule. 

MAP and ML differ fundamentally, as discussed elsewhere2. Thus, so do BCJR 
and Viterbi decoding, including Viterbi’s 1998 revival paper approximating MAP. 

BCJR start their paper with a nod to the Viterbi algorithm, but emphasize its non-
optimality for code symbols. The competitive tension in this challenge to ML 
decoding is palpable. They go on to declare an optimum (MAP) decoding method 
for linear codes. This turns out to be a bit premature from an implementation 
standpoint, and they acknowledge as much in terms of the complexity to realize a 
decoder. Whether there is a “good” way to decode, consistent with their compare-
with-½ decoding rule, may depend on the application. Still, the algorithm stands. 

                                            

1 Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate by Bahl, Cocke, 
Jelenick and Raviv, March 1974, IEEE Transactions on Information Theory 
2 Comparing the BCJR and Viterbi Algorithms, K. Kumm, Summer 2016 



 K. Kumm, Summer 2016 2 

 

2 The Algorithm 

BCJR’s algorithm is a procedure to determine a set of individual, absolute-valued 
symbol APPs (probabilities) consistent with an entire received set of encoded data. 
It is locally and globally accurate for each received code symbol. BCJR sketch out 
a way to make the algorithm apply accurately to longer sequences, like codewords, 
possibly seeking competitiveness in this sense with the Viterbi algorithm. 

The BCJR algorithm is inherently block data-oriented, which is simultaneously a 
weakness and a strength. It poses an obstacle for use in continuous, non-blocked 
data. But it also matches it up perfectly for use with blocked data. 

The essence of the BCJR algorithm is the rule for assigning APPs to all trellis 
states and transitions between states at each time-depth in the trellis. This is not 
yet a decoding rule, let alone a MAP decoding rule.  A way to convert these APPs 
into MAP decisions is described up to a point. 

The BCJR algorithm can be applied to algebraic codes, convolutional codes, turbo 
codes and other linear codes, such as low density parity check codes. Making the 
actual information decisions varies, sometimes allowing immediate decisions and 
sometimes requiring belief propagation and iteration for reliable decisions. 

To improve on the algorithm’s statement, explicit notation is used for variables in 
hypothesis, a symmetric notation for precedence of states is introduced, an error is 
corrected for a required extension of received Y by introducing an initialization 
event Z, a notation error regarding precedence of states is overcome using the 
symmetric notation, and the order of presentation is slightly rearranged. Some 
explanatory expressions in the paper are simply dropped where possible. 

The use of Z made explicit throughout can become fatiguing, so major expressions 
are reproduced in a later section stripped of Z to facilitate following the logic along 
and comparing to the paper. Expressions will not always compare! There are two 
typographical corrections, a change in the range of time and other changes having 
nothing to do with Z. Stripped expressions are valid away from block boundaries. 

Here then, with changes and additions, but using mostly the same notation, is the 
BCJR algorithm. 

Objective: For a code of rate   
k0 /n0   having a trellis representation, find the 

probabilities  
λ

t
m( ) , for state m and   

σ
t

′m ,m( )  for all supported state transitions 

from m′ to m, in the forward direction through the trellis, and a complete, received 

encoded sequence  
Y ≡Y0

τ +1
, at every trellis node time    t = 0 ,1 ,… ,τ ,τ + 1 , i.e. for 

all states and trellis depths denoted by time, given known boundary conditions of 
the starting and ending states of the trellis. 
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Reference Diagram: 

The diagram indicates the elements of the decoder and also displays the difference 
between actual information, states, encoded symbols and channel transition 
function, versus their hypotheses (shown with carats) in the decoder. 

 
Algorithm: 

For a regular trellis of code rate k0 /n0, and information symbol I of uniform pdf, 
the a priori probabilities of sending encoder states joined by a transition at t are 

  
p

t
m | ′m( ) = Pr Ŝ

t
= m | Ŝ

t−1 = ′m{ } = 2−k0  

  
q

t
X

t
= X | ′m , m( ) = Pr X

t
= X |S

t−1 = ′m , S
t
= m{ } ∈ 0, 1{ }  

for the transition probability of state m′ to m, and the probability of code symbol X  
being selected by encoder from an alphabet after the transition. 

In the decoder, over the set M of all hypothesized encoder states, the joint event 

  
Ŝ

t
= m ;Y ; Z{ }  has a posteriori probability 

  
λ

t
m( ) ≡ Pr Ŝ

t
= m ;Y ; Z{ } = Pr Ŝ

t
= m ;Y0

t ; Z{ } ⋅Pr Y
t+1
τ +1 ; Z | Ŝ

t
= m{ }  for 

  
Z ⇔ Y0 = X0;Yτ +1 = Xτ +1{ } , where encoded symbols   

X0,Xτ +1{ }  result from known 
boundary conditions, by inputting to the encoder convenient assigned information  
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by the sending encoder in a convenient assignment to  
I0, Iτ +1{ } = 0, 0{ }  (if binary) 

or  
0, 0{ }  (in general) at  t = 0  and from  t = τ − ν  to  t = τ + 1 . 

For encoder generator G of constraint length ν, shown for ν ≥ 5 for clarity, but 
extensible to ν ≥ 2 without loss of generality, the decoder’s hypothesis at each time 

for the encoded sequence   X̂  and encoder state  ̂S , given the actual X and S, is 

  
X̂0 = X0 = I0 S−1

⎡⎣ ⎤⎦ G, I0 = 0, S−1 ≡ 0−1 0−2 ... 0
− ν−2( ) 0− ν−1( )

⎡
⎣⎢

⎤
⎦⎥  

  
X̂1 = Î1 S0⎡⎣ ⎤⎦ G, S0 = 00 0−1 ... 0

− ν−3( ) 0− ν−2( )
⎡
⎣⎢

⎤
⎦⎥   

  
X̂2 = Î2 S1⎡⎣ ⎤⎦ G, Ŝ1 = Î1 00 0−1 ... 0− ν−3( )

⎡
⎣⎢

⎤
⎦⎥   

… 

  
X̂

τ − ν−1( ) = Î
τ − ν−1( ) Ŝτ −ν

⎡
⎣⎢

⎤
⎦⎥
G, Ŝτ −ν = Îτ −ν Îτ − ν+1( ) ... Îτ − ν− 3−ν( )( ) Îτ − ν− 2−ν( )( )

⎡
⎣⎢

⎤
⎦⎥  

  
X̂

τ − ν−2( ) = I
τ − ν−2( ) Ŝτ − ν−1( )

⎡
⎣⎢

⎤
⎦⎥
G, I

τ − ν−2( ) = 0, Ŝτ − ν−1( ) = Î
τ − ν−1( ) Îτ −ν ... Î

τ − ν− 4−ν( )( ) Îτ − ν− 3−ν( )( )
⎡
⎣⎢

⎤
⎦⎥   

  
X̂

τ − ν−3( ) = I
τ − ν−3( ) Ŝτ − ν−2( )

⎡
⎣⎢

⎤
⎦⎥
G, I

τ − ν−3( ) = 0, Ŝτ − ν−2( ) = 0
τ − ν−2( ) Îτ − ν−1( ) ... Îτ − ν− 5−ν( )( ) Îτ − ν− 4−ν( )( )

⎡
⎣⎢

⎤
⎦⎥  

… 

  
X̂τ = Iτ Ŝτ −1⎡⎣ ⎤⎦ G, Iτ = 0, Ŝτ −1 = 0τ −1 0τ −2 ... 0

τ − ν−2( ) Îτ − ν−1( )
⎡
⎣⎢

⎤
⎦⎥  

  
X̂τ +1 = Xτ +1 = Iτ +1 Sτ⎡⎣ ⎤⎦ G, Iτ +1 = 0, Sτ = 0τ 0τ −1 ... 0

τ − ν−3( ) 0τ − ν−2( )
⎡
⎣⎢

⎤
⎦⎥  

Let any two { previous, next } states =    
⌢m , ⌣m{ }  in a relevant direction, forward or 

backward through the trellis, generalize the precedence pairs   
′m , m{ } ,   

m , m̀{ }  
expressing forward to m and backward to m, respectively 

The channel transition probability function R at received code  
Y

t  symbol, 
independent of direction through the trellis is 

  
R̂ Y

t
| X̂ ; Z( ) = R̂ Y

t
| X̂

t
= X̂ ; Z( ) = Pr Y

t
| X̂

t
= X̂ ; Z{ }
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and over a code symbol (actual, hypothesis) =   
y

t
, x̂

t( ) , n0 code bits in length
 

  
R̂ Y

t
; Z | X̂

t( ) = r̂ y
t
j ; z j | x̂

t
j( )

j=1

n0

∏
  

For hypothesis encoder G output   
X̂

t  in the forward direction, the transition 

probability between two states jointly with received  
Y

t  is, by definitions 

   

γ
t

⌢m , ⌣m( ) ≡ Pr Ŝ
t
= ⌣m ;Y

t
| Ŝ

t−1 =
⌢m ; Z{ }

=
Pr Ŝ

t
= ⌣m | Ŝ

t−1 =
⌢m ; Z{ } ⋅ Pr X̂

t
= X̂ | Ŝ

t−1 =
⌢m , Ŝ

t
= ⌣m ; Z{ }

⋅ Pr Y
t
| X̂

t
= X̂ ; Ŝ

t−1 =
⌢m ; Ŝ

t
= ⌣m ; Z{ }

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥X̂

∑

= p
t

⌣m | ⌢m ; Z( )
X̂
∑ ⋅ q

t
X̂

t
= X̂ | ⌢m , ⌣m ; Z( )⋅ R̂ Y

t
| X̂ ; Z( )

, 

   
γ

t

⌣m , ⌢m( ) = γ
t

⌢m , ⌣m( ) . 

The probabilities of two complementary, mutually exclusive sub-sequences divide 

the total probability  
λ

t
m( )  of the complete sequence Y, at each state m at t, as 

   
α

t
m( ) ≡ Pr Ŝ

t
= m ;Y0

t ; Z{ } = α
t

⌣m( ) = α
t−1
⌢m( )

⌢m
∑ γ

t

⌢m , ⌣m( )
 

   
β

t
m( ) ≡ Pr Y

t+1
τ +1 ; Z | Ŝ

t
= m{ } = β

t

⌣m( ) = β
t+1
⌢m( )

⌢m
∑ γ

t+1
⌣m , ⌢m( ) . 

By three definitions 

 
λ

t
m( ) = α

t
m( )⋅ βt

m( ) .  

Next 

   

Ŝ
t−1 =

⌢m ;Y0
t−1 ; Z{ } Ŝ

t
= ⌣m ;Y

t
; Z | Ŝ

t−1 =
⌢m{ }∩ Y

t+1
τ +1 ; Z | Ŝ

t
= ⌣m ; Z{ }∩

⇔ Ŝ
t−1 =

⌢m ; Ŝ
t
= ⌣m ;Y ; Z{ } , 

so by definitions 
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σ

t
′m ,m( ) ≡ Pr Ŝ

t−1 =
⌢m ; Ŝ

t
= ⌣m ;Y ; Z{ } = α

t−1
⌢m( )⋅ γ t

⌢m, ⌣m( )⋅ βt

⌣m( ) . 
 

   
α

t−1
⌢m( ), t = 1,2, …, τ  and    

β
t

⌣m( ), t = τ,τ − 1, …, 1  are computable recursively 
given boundary conditions consistent with known states driven by Z 

  
α 0 0( ) = 1 ; α 0 m( ) = 0 , m ≠ 0  at the start of Y,  

  
βτ +1 0( ) = 1 ; βτ +1 m( ) = 0 , m ≠ 0  at the end of Y. 

At each trellis depth, or t, the two joint probabilities  
λ

t
m( )

,   
σ

t
′m ,m( )

, for all 

states, are evaluated promptly, as soon as    
α

t−1
⌢m( ), αt

⌢m( ), βt

⌣m( )  and γ
t

⌢m, ⌣m( )
 are 

determined, to produce their individual APP state probabilities and stored, then if 
desired, used to make an information decision for t using an additional procedure. 

3 Comments on Expressions 

Use of    t = 0 ,1 ,… ,τ ,τ + 1  for the total range of times (depths) in the trellis, an 
implication in the paper made clear near the end of it, is made tangible at the 
outset.  That implication is that sent information may only be arbitrary (useful) 

for    
t =1 ,… ,τ − ν − 1( )  with the boundaries at  t = 0  and    t =τ − ν ,… , τ + 1

constrained to known values (e.g., 0). The “padding” is not symmetric around the 

block! This boundary value padding allows the recursion for  
β

t
m( )  and the 

assignment of α 0 0( )  without “breaking” the general expressions. 

The information below is binary except where it is recognized explicitly that it can 
be non-binary, as a vector I. Bits are the baseline for these comments. 

The definition of state here is the “memory” of the encoder, from output symbol to 
symbol. In this conventional way, current state plus next information = next state. 
This is visualized as the first ν − 1  stages of a shift register of length ν, with the 
current information bit (reflected by the current output X) already shifted in and 
part of the state. The last information bit in the register is not part of the state, 
even though it is reflected by X. This is consistent with the paper’s trellis figure 
and markings for “State,” as it must be, but as a consequence it extends the trellis 
at the beginning and at the end by one symbol time in one transition line 
connecting two m = 0 states (at each end). 

The meaning of a supported state transition from m′ to m is that the encoder, for 
any generator G (encompassing the polynomial multipliers in conventional 
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convolutional codes), makes possible two consecutive states (m′, m) at times (tn-1, tn) 

where   
m 1 :ν − 1( ) = I

m
′m 1 :ν − 2( )⎡

⎣
⎤
⎦ , for all  

I
m . State pairs impossible for the 

encoder do not support state transition. 

Regarding the sequences (actual, hypothesized) for code symbols X,   X̂ , and states 

S,  ̂S , with known data substituted where possible, 

  

X0

X1 X2 ... X
τ − ν−1( )

⎡
⎣⎢

⎤
⎦⎥

X
τ − ν−2( ) ... Xτ Xτ +1

⎡
⎣⎢

⎤
⎦⎥

, 

  

X0

X̂1 X̂2 ... X̂
τ − ν−1( )

⎡
⎣⎢

⎤
⎦⎥

X̂
τ − ν−2( ) ... X̂τ Xτ +1

⎡
⎣⎢

⎤
⎦⎥

 and 
 

S−1

S0 S1 ... Sτ −ν⎡⎣ ⎤⎦

S
τ − ν−1( ) ... Sτ −1 Sτ

⎡
⎣⎢

⎤
⎦⎥

, 
 

S−1

S0 Ŝ1 ... Ŝτ −ν⎡⎣ ⎤⎦

Ŝ
τ − ν−1( ) ... Ŝτ −1 Sτ

⎡
⎣⎢

⎤
⎦⎥

    
 

correspond to information sequences I,  ̂I   

 

I0
I1 I2 ... I

τ − ν−1( )
⎡
⎣⎢

⎤
⎦⎥

I
τ − ν−2( ) ... Iτ Iτ +1

⎡
⎣⎢

⎤
⎦⎥  ,  

I0
Î1 Î2 ... Î

τ − ν−1( )
⎡
⎣⎢

⎤
⎦⎥

I
τ − ν−2( ) ... Iτ Iτ +1

⎡
⎣⎢

⎤
⎦⎥   

The information 
 
I0 I

τ − ν−2( ) ... Iτ Iτ +1
⎡
⎣⎢

⎤
⎦⎥{ }  of lengths 

 
1, 1− − ν − 2( )( ){ } = 1, ν − 1{ }  is 

predetermined (known, e.g. as zeros), so only the information 
 
I1 I2 ... I

τ − ν−1( )
⎡
⎣⎢

⎤
⎦⎥  of 

length 1− τ − ν − 1( )( ) = τ − ν  is useful. The information is, for binary codes, of one 

bit each (per vector shown). For non-binary codes, it is the vectors  
I
n . 

Regarding the joint state transition, received symbol  
Y

t  probability  
γ

t , the 
development of this expression is one of the harder ones to see. Consider first the 
two events 

   
X̂

t
= X̂ ; Ŝ

t−1 =
⌢m ; Ŝ

t
= ⌣m ; Z{ } , X̂

t
= X̂ ; Z{ }

. 

The only reason these two events have a common result in the sum over X 
expression below is the “sorting filter” function imposed by the product 

   
p

t

⌣m | ⌢m ; Z( )⋅ qt
X̂

t
= X̂ | ⌢m , ⌣m ; Z( ) .
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The reason has nothing to do a “unique”   X̂ .   
R̂ Y

t
| X̂ ; Z( )  is not unique to just this 

state transition! It appears many times at each trellis depth for transitions in 
large constraint length codes. The “filter” is just the combined effect of the p and q 

functions, allowing the contraction of dropping dependence on    
Ŝ

t−1 =
⌢m ; Ŝ

t
= ⌣m . 

   

γ
t

⌢m , ⌣m( ) ≡ Pr Ŝ
t
= ⌣m ;Y

t
| Ŝ

t−1 =
⌢m ; Z{ }

=
Pr Ŝ

t
= ⌣m | Ŝ

t−1 =
⌢m ; Z{ } ⋅ Pr X̂

t
= X̂ | Ŝ

t−1 =
⌢m , Ŝ

t
= ⌣m ; Z{ }

⋅ Pr Y
t
| X̂

t
= X̂ ; Ŝ

t−1 =
⌢m ; Ŝ

t
= ⌣m ; Z{ }

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥X̂

∑

= p
t

⌣m | ⌢m ; Z( )
X̂
∑ ⋅ q

t
X̂

t
= X̂ | ⌢m , ⌣m ; Z( )⋅ R̂ Y

t
| X̂ ; Z( )

 

where   
R̂ Y

t
| X̂ ; Z( )  is conditional, not joint, a typographical error in the paper. 

The middle sum above is required for equivalence to    
Pr Ŝ

t
= ⌣m ;Y

t
| Ŝ

t−1 =
⌢m ; Z{ } . 

This is because of a conditional probability identity on which the expression is 
based. This can be checked in a compact way, with shortened nomenclature 

   
A : Ŝ

t−1 =
⌢m, B : Ŝ

t
= ⌣m, X : X̂

t
= X̂, Y :Y

t
P : Pr , and Z dropped for clarity. 

The expression for    
γ

t

⌢m , ⌣m( )  now translates to 

 
P B,Y | A{ } = P B| A{ } ⋅ P X| A, B{ } ⋅ P Y | X,A,B{ }⎡⎣ ⎤⎦

X
∑ , to be verified.

 
Since all terms in the expression are conditioned on A, and because A does not 
appear in any lefthand argument of a probability, the entire expression can be 
contracted to conditional on A, now just implied, and stripped from each term. 

 
P B,Y{ } = P B{ } ⋅ P X| B{ } ⋅ P Y | X,B{ }⎡⎣ ⎤⎦

X
∑ ∀ | A( )

      
P B,Y{ } = P Y | X,B{ } ⋅ P X| B{ } ⋅ P B{ }⎡⎣ ⎤⎦

X
∑

  
P B,Y{ } = P Y | X,B{ } ⋅ P X,B{ }⎡⎣ ⎤⎦

X
∑ = P Y,X,B{ }

X
∑ = P Y,B{ } ∀ | A( )  

 
P B,Y | A{ } = P B,Y | A{ } , QED. 
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Regarding the joint transition probabilities    
γ

t

⌣m , ⌢m( ) = γ
t

⌢m , ⌣m( ) , the transitions 
are symmetric, hence the probabilities identical, for fixed times t −1 and t. This is 

because none of the three probabilities   
p

t
, q

t
, R{ }  depend on direction. If the 

computations of  
γ

t  in one direction are saved, they can be reused in the opposite 
direction. And to write 

   

γ
t

⌣m , ⌢m( ) = Pr Ŝ
t−1 =

⌣m ;Y
t
; Z | Ŝ

t
= ⌢m{ }

= p
t

⌢m | ⌣m( )
X̂
∑ ⋅ q

t
X̂ | ⌣m , ⌢m( )⋅ R̂ Y

t
| X̂( )  

is unnecessary unless values going forward are not saved for going backward. 

Regarding the recursions 

   
α

t
m( ) ≡ Pr Ŝ

t
= m ;Y0

t ; Z{ } = α
t

⌣m( ) = α
t−1
⌢m( )

⌢m
∑ γ

t

⌢m , ⌣m( )
  

   
β

t
m( ) ≡ Pr Y

t+1
τ +1 ; Z | Ŝ

t
= m{ } = β

t

⌣m( ) = β
t+1
⌢m( )

⌢m
∑ γ

t+1
⌣m , ⌢m( ) , 

they have the same meaning as 

  
α

t
m( ) = α

t−1 ′m( )
′m
∑ γ

t
′m ,m( ) , 

  
β

t
m( ) = β

t+1 m̀( )
m̀
∑ γ

t+1 m , m̀( )
 

but avoid the paper’s confusion of reusing m′ for two different purposes, once in 

 
α

t
m( )  as a preceding variable, and a second time in  

β
t

m( )  as a dummy variable. 

The odd fact that  
α

t
m( )  is a purely joint probability, while  

β
t

m( )  is a conditional 

probability is explained by the disjoint-ness of events   
Ŝ

t
= m{ }  and 

 
Y

t+1
τ +1{ } . The 

 
β

t
m( )  has a “target of   

Ŝ
t
= m{ }  , while  

α
t

m( )  is concurrent with  Y0
t . It may not 

be intuitive. But it works, perfectly. 

Regarding the equivalence of events 

   

Ŝ
t−1 =

⌢m ;Y0
t−1 ; Z{ } Ŝ

t
= ⌣m ;Y

t
; Z | Ŝ

t−1 =
⌢m{ }∩ Y

t+1
τ +1 ; Z | Ŝ

t
= ⌣m ; Z{ }∩

⇔ Ŝ
t−1 =

⌢m ; Ŝ
t
= ⌣m ;Y ; Z{ }

 
This can be shown in two steps, ignoring Z for clarity 
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Ŝ

t−1 =
⌢m ;Y0

t−1{ } Ŝ
t
= ⌣m ;Y

t
| Ŝ

t−1 =
⌢m{ }∩ ⇔ Ŝ

t−1 =
⌢m ; Ŝ

t
= ⌣m ;Y0

t{ }
 

   
Ŝ

t−1 =
⌢m ; Ŝ

t
= ⌣m ;Y0

t{ } Y
t+1
τ +1 | Ŝ

t
= ⌣m{ }∩ ⇔ Ŝ

t−1 =
⌢m ; Ŝ

t
= ⌣m ;Y0

τ +1{ } . 

This also corrects a minor typographical error in the paper, where “|” for condition 

did not show in    
Pr Y

t+1
τ +1 ; Z | Ŝ

t
= ⌣m{ } . 

Ultimately, this equivalence works due to the three separate events in the event 
intersections being mutually exclusive. 

However, every aspect of the algorithm must potentially deal with the boundary 
conditions Z, and hence placing it explicitly into expressions where it applies forces 
saliency and avoids questions about the “impossible” consequences for t taking on 
values 0 and τ +1, as always occurs. Using Z, the impossibilities vanish. The 
consequence is that information may be arbitrary for all of t = 1, … , τ, since 

  
α

t−1
⌢m( )  and   

β
t+1
⌣m( )  are boundary conditions at t = 1 and t = τ  based on known 

information thereafter, and so do not require further recursion, just assignment. 

BCJR didn’t obtain this result, requiring the explicit  
Y0

τ +1
, and that can be seen as 

a minor error. 

4 Z-Free Expressions 

Below are the main expressions of the algorithm, in order, without explanations. 
Where they depend on Z, they are stripped of it, marked (Z), indented and become 
inapplicable at boundaries. If familiar with the definition of all terms, the entire 
algorithm can be “browsed” here. 

  
p

t
m | ′m( ) = Pr Ŝ

t
= m | Ŝ

t−1 = ′m{ } = 2−k0

 

  
q

t
X

t
= X | ′m , m( ) = Pr X

t
= X |S

t−1 = ′m , S
t
= m{ } ∈ 0, 1{ }  

(Z)   
λ

t
m( ) ≡ Pr Ŝ

t
= m ;Y{ } = Pr Ŝ

t
= m ;Y0

t{ } ⋅Pr Y
t+1
τ +1 | Ŝ

t
= m{ }  

(Z)   
R̂ Y

t
| X̂( ) = R̂ Y

t
| X̂

t
= X̂( ) = Pr Y

t
| X̂

t
= X̂{ }  

(Z)   
R̂ Y

t
| X̂

t( ) = r̂ y
t
j | x̂

t
j( )

j=1

n0

∏  

(Z)    
X̂

t
= X̂ ; Ŝ

t−1 =
⌢m ; Ŝ

t
= ⌣m{ }⇔ X̂

t
= X̂{ }
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(Z)

    

γ
t

⌢m , ⌣m( ) ≡ Pr Ŝ
t
= ⌣m ;Y

t
| Ŝ

t−1 =
⌢m{ }

=
Pr Ŝ

t
= ⌣m | Ŝ

t−1 =
⌢m{ } ⋅ Pr X̂

t
= X̂ | Ŝ

t−1 =
⌢m , Ŝ

t
= ⌣m{ }

⋅ Pr Y
t
| X̂

t
= X̂ ; Ŝ

t−1 =
⌢m ; Ŝ

t
= ⌣m{ }

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥X̂

∑

= p
t

⌣m | ⌢m( )
X̂
∑ ⋅ q

t
X̂

t
= X̂ | ⌢m , ⌣m( )⋅ R̂ Y

t
| X̂( )

 

   
γ

t

⌣m , ⌢m( ) = γ
t

⌢m , ⌣m( )

 (Z)    
α

t
m( ) ≡ Pr Ŝ

t
= m ;Y0

t{ } = α
t

⌣m( ) = α
t−1
⌢m( )

⌢m
∑ γ

t

⌢m , ⌣m( )  

(Z)    
β

t
m( ) ≡ Pr Y

t+1
τ +1 | Ŝ

t
= m{ } = β

t

⌣m( ) = β
t+1
⌢m( )

⌢m
∑ γ

t+1
⌣m , ⌢m( )  

 
λ

t
m( ) = α

t
m( )⋅ βt

m( )
 

(Z)    

Ŝ
t−1 =

⌢m ;Y0
t−1{ } Ŝ

t
= ⌣m ;Y

t
| Ŝ

t−1 =
⌢m{ }∪ Y

t+1
τ +1 | Ŝ

t
= ⌣m{ }∪

⇔ Ŝ
t−1 =

⌢m ; Ŝ
t
= ⌣m ;Y{ }

 

(Z)    
σ

t
′m ,m( ) ≡ Pr Ŝ

t−1 =
⌢m ; Ŝ

t
= ⌣m ;Y{ } = α

t−1
⌢m( )⋅ γ t

⌢m, ⌣m( )⋅ βt

⌣m( )  

  
α 0 0( ) = 1 ; α 0 m( ) = 0 , m ≠ 0

 

  
βτ +1 0( ) = 1 ; βτ +1 m( ) = 0 , m ≠ 0  

5 Observations on the Algorithm 

It is ironic that the objective of the algorithm and its formal statement, being the 

two probabilities  
λ

t
m( )  and   

σ
t

′m ,m( ) , involve only a forward state transition 

from m′ to m, and not a backward state transition from   ̀m  to m, as the essense of 
the algorithm is a combined forward and backward computation. The two 
directions are collapsed into one direction, consistently by way of definitions, as 

   
σ

t
′m ,m( ) = α

t−1
⌢m( )⋅ γ t

⌢m, ⌣m( )⋅ βt

⌣m( )  

where the definition of   
σ

t
′m ,m( )  in the algorithm is now an assignment. 
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It’s for the above reasons that the terms   
′m , m{ }  are retained at the beginning 

and end, and the term    
⌢m , ⌣m{ }  for intermediate computations to avoid confusion 

between the m′ terms in the   
α

t

⌢m( )  and   
β

t

⌣m( )  recursive expressions, where the 
paper had confusingly used m′ as both a preceding variable and a dummy variable 
of reverse meaning of order. 

The values of    
γ

t

⌢m, ⌣m( ) , need to be computed in but one direction for the   
α

t

⌢m( ) , 
retained in a memory, then applied again, without recomputing, in the opposite 

direction for the   
β

t

⌣m( ) . BCJR suggest it may be more efficient to compute  
γ

t  in 
each direction, perhaps because fast memory was so costly in 1974. Today, it may 

be better to store and retrieve the  
γ

t  unless data rates are so high that dedicated 
hardware is used to perform the algorithm, in which case, why not reuse it unless 
it is in continuous use, e.g. pipelining from block to block? It follows from this and 

the availability of each successive    
α

t−1
⌢m( ), αt

⌢m( ), βt

⌣m( )  and γ
t

⌢m, ⌣m( )  tuple on 

the backward return from the βτ +1 0( ) = 1  boundary condition, that the final 
result, whether it be the state transition soft decision or an information decision, 
can be output at each trellis depth, without waiting for the backward calculation 

to complete to   
β1
⌣m( ) . 

5 Decoding 

To make decisions, the BCJR paper, once finished with the APP algorithm, 
proposes, for convolution codes, a comparative test of the total probability of a 
putative “test” decision, 0 in their case, with ½ at each “time-depth” in the trellis. 
This is analogous to the likelihood ratio test in Viterbi ML decoding. So it could be 
the case (here, but suggestively) that BCJR decoding using this comparative test 
has no decision reliability advantage over a Viterbi forward-backward algorithm! 
Such foretelling might even be hinted by BCJR when discussing relative decoding 
performance of the two algorithms, which they suggest may be about equal for 
codewords. 

[Nevertheless, the BCJR state and transition APPs at each code symbol remain 
optimal, an advantage to BCJR if it can be efficiently exploited, as it would later 
be in decoding procedures involving belief propagation, iteration, very fast 
processors and large memories.] 

The suggestion that BCJR decoding, with its “½ test,” implementable or not, may 
not be MAP rests on ½ being the correct, call it best, comparison threshold. If ½ is 
the best threshold at that time, and independent of time as it doesn’t change, then 



 K. Kumm, Summer 2016 13 

the scheme retains MAP status for decisions. However, if ½ is somehow not best 
for all times, then decoding by the BCJR algorithm plus this decision scheme is no 
longer MAP. How might this happen? It won’t happen because of a channel being 
worse than average over short intervals, because this doesn’t change channel 
symmetry. It might happen for non-scrambled information with anomalously long 
runs of 0s or 1s, but this requires further investigation. 

Regardless, here follows the decision scheme proposed by BCJR. For the arbitrary 
choice of putative information bit 0 (versus 1) at time t, the decision criterion is  

  
Pr î

t
( j ) = 0; Z |Y ; Z{ } > 1/ 2 , î

t
( j ) = 0 ;   else, î

t
( j ) = 1

 

where   
î
t
( j )

 is the decision, “looking back” from 0 up to ν −1 code symbols (and the 
information underlying them) earlier, from t.  [Presuming the known event Z 
allows eliminating all Zs above, the criterion development will look the same as in 
the paper. However, Z plays a crucial role in the decoding scheme.] 

This looking back is reminiscent of trace back in Viterbi decoding. Of course, the 
look-back “reach” in this case may be merely by one symbol, radically different 
from Viterbi trace back. This also raises a separate issue, not addressed by the 
paper, about multiple potential decisions about the same code symbol as the trellis 
is traversed by the scheme. What if the same time-depth, which appears in ν −1 
adjacent depths, can end up containing different decisions from different look 
backs at near times? Does this scheme need to be elaborated with some new sub-
rule, like taking the oldest state bit j at a depth, or perhaps by majority rule over 
multiple depths? These questions are left unanswered. 

The conditional probability for   
î
t
( j )

 can be expressed as two joint probabilities. 

  
Pr î

t
( j ) = 0; Z |Y ; Z{ } = Pr î

t
( j ) = 0 ;Y ; Z{ }/ Pr Y ; Z{ }

 

Z ensures that events   
Ŝτ = m ;Y ; Z{ } = Ŝτ = 0;Y ; Z{ } = Y ; Z{ } , so by definition 

  
λτ 0( ) = Pr Ŝτ = 0;Y ; Z{ } = Pr Y ; Z{ }  as   

Pr Ŝτ = 0{ } = 1  at this depth. 

The probability of event   
î
t
( j ) = 0;Y ; Z{ }  on the other hand can occur at any t, and 

expresses the total probability of event   
î
t
( j ) = 0;Y ; Z{ } = î

t
( j ) = 0;Y{ }  anywhere 

other than at the boundaries. 

The decision scheme must also obtain   
Pr î

t
( j ) = 0 ;Y ; Z{ } . BCJR observe that 
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Pr î
t
( j ) = 0;Y ; Z{ } = λ

t
m( )

st
( j )∈At

( j )
∑ ; A

t
( j ) ∈ Ŝ

t
: ŝ

t

j( ) = 0{ },
j = 1,… , k0( ) = 1,… , ν − 1( )  

and   
ŝ

t

j( ) = î
t

j( )
 because the contents of a state are just information symbols (bits).

 
This is attractive since all the  

λ
t

m( )  are already known. It is just a regular 
procedure to pick the applicable states m and sum them. 

Putting the two together, noting critical difference between t in general and τ  in 
particular 

  

Pr î
t
( j ) = 0; Z |Y ; Z{ } = 1

λτ 0( ) λ
t

m( )
st
( j )∈At

( j )
∑ .

 
The ½ test is applied and a decision is made. It seems almost trivial until the 

question is asked, how is the value of λτ 0( )  obtained? BCJR don’t suggest how to 
do it, but there is an obvious approach. 

It turns out that λτ 0( )  is problematic, depending on the application. Consider 
how it might be obtained as 

  
λτ 0( ) = ατ 0( )⋅ βτ 0( ) = ατ 0( ) = Pr Ŝτ = 0;Y0

τ ; Z{ } = ατ−1 ′m( )
′m
∑ γ τ ′m ,0( ) .

 
Rewriting for the boundary conditions affecting time τ 

  
λτ 0( ) = ατ−1 ′m( )γ τ ′m ,0( )

B
∑ ,   

B ⇔ ′m : sτ −1
k0 ν−1( ) ∈Aτ −1

k0 ν−1( )
, A as previously defined. 

All the terms in the sum are available as previous computations. The  
ατ−1 ′m( )  

and   
γ τ ′m ,0( )  are already stored for all states m′ , and possibly also for transitions 

(m′, 0), the subject of a previous observation. λτ 0( )  is readily computable, and 
need be done only once according to the decoding scheme. That’s the good part. 

The problematic part, simply put, is that one short segment of the channel and 

trellis, embodied in  
ατ−1 ′m( )  and literally present in   

γ τ ′m ,0( )  is being used to 
normalize probabilities across the rest of an arbitrarily long block of received 

symbols. On average, across many blocks, the normalization factor λτ 0( )  will 
approach its expected value, but not for one block alone. In a sense, this is a 
“turbo”-like effect on the decoder’s original estimate of the channel embodied in 
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R̂ Y

t
; Z | X̂

t( ) . This suggests that “BCJR decoding” of ordinary convolutional codes 

should be applied to many, relatively short blocks, instead of fewer, relatively long 

blocks, running an average over individual samples of λτ 0( ) . 

This finally raises a question about APP estimation in general. The BCJR, and 
presumably any APP algorithm, always depend on knowledge about the channel. 
The channel model in the reference diagram is not the channel! It is a guess, a 
specified operating point, a calculation based on observation of known data, or 
perhaps a convergence to an acceptable output error rate. There are many ways to 
populate the model with numbers. This is true for any convolutional decoder. It is 
not true for hard decision algebraic block decoders seeking the minimum distance 
between a received word and all codewords. The reliance on some estimate of 
channel SNR, particularly Ecb /N0 for code bits, or worse, analog SNRs like C / N0 
which is notoriously difficult to measure, is troubling news for absolute probability 
algorithms like BCJR. Good implementations become system dependent for this 
reason. But because of this, there remains a demand for communication engineers, 
long after the algorithms. That’s the good news. 


